EXAMPLE 5.7

Header System Design

Given

Find Determine header size (2 x 8 or 2 x 10) by considering system effect of all horizontal members spanning the opening.

Solution

1. Determine tabulated design values by using the NDS-S (Table 4A)

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{b}} & =775 \mathrm{psi} \\
\mathrm{~F}_{\mathrm{v}} & =70 \mathrm{psi} \\
\mathrm{~F}_{\mathrm{c} \perp} & =335 \mathrm{psi} \\
\mathrm{E} & =1.1 \times 10^{6} \mathrm{psi}
\end{array}
$$

2. Determine lumber property adjustments (Section 5.2.4)
$\mathrm{C}_{\mathrm{r}}=1.3(2 \times 10$ double header per Table 5.8)
$=1.2(2 \times 8$ double header per Table 5.4)
$\mathrm{C}_{\mathrm{D}}=1.25$ (snow load)
$\mathrm{C}_{\mathrm{F}}=1.1(2 \times 10)$
$=1.2(2 \mathrm{x} 8)$
$\mathrm{C}_{\mathrm{H}}=2.0$
$\mathrm{C}_{\mathrm{b}}=1.0$
$C_{L}=1.0$ laterally supported

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}{ }^{\prime} & =\mathrm{F}_{\mathrm{b}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{r}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{L}}=(775 \mathrm{psi})(1.25)(1.3)(1.1)(1.0)=1,385 \mathrm{psi}[2 \times 10] \\
& =(775 \mathrm{psi})(1.25)(1.2)(1.1)(1.0)=1,279 \mathrm{psi}[2 \times 8] \\
\mathrm{F}_{\mathrm{v}}{ }^{\prime} & =\mathrm{F}_{\mathrm{v}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{H}}=(70 \mathrm{psi})(1.25)(2)=175 \mathrm{psi} \\
\mathrm{~F}_{\mathrm{c}, \prime} & =\mathrm{F}_{\mathrm{c} \perp} \mathrm{C}_{\mathrm{b}}=(335 \mathrm{psi})(1)=335 \mathrm{psi} \\
\mathrm{E}^{\prime} & =\mathrm{E}=1.1 \times 10^{6} \mathrm{psi}
\end{aligned}
$$

With double top plate, F_{b} can be increased by 5 percent (Table 5.8)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{b}}^{\prime}=\mathrm{F}_{\mathrm{b}}^{\prime}(1.05)=1,385 \mathrm{psi}(1.05)=1,454 \mathrm{psi}[2 \times 10] \\
& \mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}^{\prime}{ }^{\prime}(1.05)=1,279 \mathrm{psi}(1.05)=1,343 \mathrm{psi}[2 \times 8]
\end{aligned}
$$

3. Determine header size due to bending for floor load only

$$
\begin{array}{ll}
\mathrm{M}_{\max } & =\frac{\mathrm{w} \ell^{2}}{8}=\frac{(600 \mathrm{plf})(6.5 \mathrm{ft})^{2}}{8}=3,169 \mathrm{ft}-\mathrm{lb} \\
& =\frac{\mathrm{M}_{\max }}{\mathrm{S}} \leq \mathrm{F}_{\mathrm{b}} \\
\mathrm{f}_{\mathrm{b}} \\
1,454 \mathrm{psi} & =\frac{3,169 \mathrm{ft}-\mathrm{lb}(12 \mathrm{in} / \mathrm{ft})}{\mathrm{S}} \\
\mathrm{~S} & =26.2 \mathrm{in}^{3} \\
\mathrm{~S} \text { for } 22 \times 10 & =2\left(21.39 \mathrm{in}^{3}\right)=42.78 \mathrm{in}^{3}>26.2 \mathrm{in}^{3} \quad(\mathrm{OK})
\end{array}
$$

Try 2 2x8s
$1,343 \mathrm{psi}=\frac{3,169 \mathrm{ft}-\mathrm{lb}(12 \mathrm{in} / \mathrm{ft})}{\mathrm{S}}$
$\mathrm{S} \quad=28.3 \mathrm{in}^{3}$
S for $22 \mathrm{x} 8=2(13.14)=26.3 \mathrm{in}^{3}<28.3 \mathrm{in}^{3}$ (close, but no good)
4. Determine member size due to bending for combined floor and supported wall loads by using the 1.8 system factor from Table 5.8, but not explicitly calculating the load sharing with the band joist above.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{b}}^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{r}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)=775 \mathrm{psi}(1.25)(1.8)(1.1)(1.0)=1,918 \mathrm{psi} \\
& \mathrm{M}_{\max }=\frac{\mathrm{w} \ell^{2}}{8}=\frac{(360 \mathrm{plf}+600 \mathrm{plf})(6.5 \mathrm{ft})^{2}}{8}=5,070 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{f}_{\mathrm{b}} \quad=\mathrm{M} / \mathrm{S} \leq \mathrm{F}_{\mathrm{b}} \\
& 1,918 \mathrm{psi}=\frac{5,070 \mathrm{ft}-\mathrm{lb}(12 \mathrm{in} / \mathrm{ft})}{\mathrm{S}} \\
& \mathrm{~S}=31.7 \mathrm{in}^{3} \\
& \mathrm{~S} \text { for } 2-2 \times 10=42.78 \mathrm{in}^{3}>31.7 \mathrm{in}^{3} \quad(\mathrm{OK})
\end{aligned}
$$

5. Check horizontal shear

$$
\begin{aligned}
& \mathrm{V}_{\max }=\frac{\mathrm{w} \ell}{2}=\frac{(600 \mathrm{plf})(6.5)}{2}=1,950 \mathrm{lb} \\
& \mathrm{f}_{\mathrm{v}} \quad=\frac{3 \mathrm{~V}}{2 \mathrm{~A}}=\frac{3(1,950 \mathrm{lb})}{2(2)(1.5 \mathrm{in})(9.25 \mathrm{in})}=106 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{v}} \quad \leq \mathrm{F}_{\mathrm{v}} \\
& 106 \mathrm{psi}<175 \mathrm{psi} \quad(\mathrm{OK})
\end{aligned}
$$

